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Simulating Causal, Reactive and Independent Relationships Among Traits to 

Assess the Power of the LCMS Procedure. The LCMS procedure, which assesses 

whether the data support a causal, reactive or independent relationship among traits 

controlled by the same locus, can be validated in several ways. As a first validation step, 

we simulated traits under the control of a common locus assuming either an independent 

or causal/reactive model to assess the power to detect the true model.   Supplementary 

Figure 1 highlights power curves for 5 different simulated models. In each case 

genotypes for the hypothetical locus were simulated assuming an F2 intercross 

population of size 360.  The genetic map and cross were simulated using the Rmap and 

Rcross programs in the QTL Cartographer software package1.  A primary trait, PR , was 

then simulated based on a simple additive linear relationship between simulated 

quantitative trait values and genotypes at the simulated locus, where the strength of 

association was fixed as indicated by the directed edges linking the locus to PR  in 

Supplementary Figure 1.  The residuals of this simulated relationship between locus and 

PR  were taken to be normally distributed.   

After simulating the locus genotypes and primary trait for each causal model 

indicated in Supplementary Figure 1, secondary traits were simulated for each model 

with varying degrees of association with the primary trait.  Note that the higher the 

association with the primary trait, the higher the association with the trait locus 

genotypes.  We also simulated the independence model in which the two traits were 

conditionally independent given the genotype.  For the causal/reactive models the 

secondary trait cannot achieve a stronger association to the locus than the primary trait, 

since it depends on the genotype only through the primary trait.  Thus, as the genetic 

correlation of the secondary trait approaches that of the primary trait, the correlation 



between the traits approaches 100%.  The associations were simulated such that the 

correlations between locus and secondary trait were varied in 0.001 increments from a 

coefficient of determination ( 2r ) of 0 up to the maximum possible value determined by 

the given model.  For each such value the secondary trait was simulated 1000 times, and 

the likelihoods for the 3 possible models for each simulation were fit to the data.  The 

model with an AIC significantly smaller than the AIC’s of the competing models was 

noted for each simulation. The threshold to determine whether an AIC was significantly 

smaller than competing AIC’s was determined empirically by constraining the false 

positive rate to be less then 5%.  In addition, the association between the secondary trait 

and locus genotypes had to be significant at the 0.05 level before the AIC comparison 

could be considered valid.  The power for each 2r  tested was then taken as the number of 

times the true model was chosen, divided by 1000, the number of simulations considered 

for each coefficient of determination value considered.  While we use a 0.05 significance 

cutoff to highlight the power of the LCMS procedure, in practice we choose the model 

with the lowest AIC.  Using this strategy the proportion of time the correct model is 

chosen when applied to the simulated data is almost always 100%.   

For all of the models the power is seen to drop off dramatically as the maximum 

association between locus genotypes and secondary trait that can be realized by a given 

model is achieved.  For the independent model this drop in power is caused by the 

secondary trait becoming 100% correlated with the locus genotypes, so that the 

secondary trait and locus genotypes become indistinguishable.  This symmetry results in 

an inability to discriminate the independent model from the causal/reactive model.  The 

situation is similar for the causal/reactive models, where the primary and secondary traits 

become 100% correlated as the maximum association possible between the locus 

genotypes and secondary trait is achieved.  Again, this symmetry makes it impossible to 

discriminate the two traits, so that the model in which the primary trait is causal for the 



secondary trait is indistinguishable from the model in which the secondary trait is causal 

for the primary trait.  

Linkage Disequilibrium versus Pleiotropic Effects. The test for pleiotropy vs. close 

linkage described in the main text was tested in the following way. Let 1Y  and 2Y  

represent quantitative trait random variables, with QTL 1Q  and 2Q  at positions 1p  and 

2p , respectively.  The primary hypothesis to test is whether 1 2p p= , indicating a 

pleiotropic effect at the QTL for traits 1Y  and 2Y .  Zeng et al.2 devised statistical tests to 

assess whether the positions are equal.  We have developed a slight generalization of this 

test. Because the positions under consideration for this test will be relatively close 

together on a given chromosome (e.g., within 20 cM), we would expect 1Y  and 2Y  to be 

correlated if the QTL effects at each location are significant enough, and so we form the 

most basic model for these traits under the control of a single, common QTL as 
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The case where 1 2p p=  represents the null hypothesis of pleiotropy.  The aim is 

to test this null against a more general alternative hypothesis that indicates 1 2p p≠ .  The 

alternative hypotheses of interest can be captured by the following model: 
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where the iε  are distributed as for the pleiotropy model.  We are now in a position to test 

the null hypothesis against any of a series of alternative hypotheses.  The likelihoods for 

the 2 competing models are easily formed, and maximum likelihood methods are then 
employed to estimate the model parameters ( , ,  and i j kµ β σ ).  With the maximum 

likelihood estimates in hand, we can form the likelihood ratio test statistic to directly test 

the null hypothesis against the alternative. 

There are several alternative hypotheses that could be tested in the setting.  The 

most relevant for our purposes is: 

1. 1 4 2 3: 0, 0, 0, 0,AH β β β β≠ ≠ = =  

indicating closely linked QTL with no pleiotropic effects.  Other alternative hypotheses 

that could be tested are: 

2. 1 4 2 3: 0, 0, 0, 0,AH β β β β≠ ≠ ≠ =  

indicating closely linked QTL with pleiotropic effects at the first position, 

3. 1 4 2 3: 0, 0, 0, 0,AH β β β β≠ ≠ = ≠  

indicating closely linked QTL with pleiotropic effects at the second position, and 

4. 1 4 2 3: 0, 0, 0, 0,AH β β β β≠ ≠ ≠ ≠  

indicating closely linked QTL with pleiotropic effects at both positions. Other null 

hypotheses and corresponding alternative hypotheses naturally follow from the general 

models presented here. 

Forming the Likelihoods for the LCMS Procedure. Each of the 3 models depicted in 

Figure 1a induces a particular correlation structure between C  and R  that can be easily 

modeled by placing mathematical constraints on the underlying joint probability 



distribution for the variables ( ), ,L C R .  If we assume standard Markov properties for the 

simple graphs depicted in Figure 1a, then the joint probability distributions for the 3 

models of interest are: 

M1. ( ) ( ) ( ) ( ), , | |P L R C P L P R L P C R=  

M2. ( ) ( ) ( ) ( ), , | |P L R C P L P C L P R C=  

M3. ( ) ( ) ( ) ( ), , | | ,P L R C P L P R L P C R L=  

If we further assume the traits R  and C  are normally distributed about each genotypic 

mean at the common locus L , the likelihoods corresponding to each of the joint 

probability distributions given above are easily constructed, as detailed below.  The 

likelihood-based causality model selection (LCMS) procedure introduced in the main text 

then consists of selecting the model with the highest likelihood given the data, which is 

the model that is best supported by the data.  Let R  be a gene expression trait for some 

gene g , and let C  be a classic quantitative phenotype (e.g., a clinical trait) .  Without 

loss of generality, we treat R  and C as quantitative traits (similar arguments would hold 

for qualitative traits).  For the association between R  and C , it is of interest to determine 

those genetic and environmental components driving the association, and it is of interest 

to determine whether we can assess in a genetics context whether one trait drives the 

other.  That is, does one of the following relationships hold: 

CR CR

 

It is not possible to look at these two traits in isolation and determine which, if any, of 

these cases holds.  In the more classical graphical modeling context, where the aim is to 

reconstruct complex networks of interaction, different graphical structures are assessed 



and edges are weighted and directed in such structures using conditional mutual 

information measures that examine, for instance, all adjacent triplets (say, ,,YX  and Z ) 

in the graph, where the topology of the graph is constrained a priori to satisfy certain 

Markov properties.  Without the genetic information discussed in the main text, this 

network reconstruction problem is difficult because many of the different possibilities 

that are considered are not easily distinguishable3.  For instance, consider the following 

three possible relationships among three traits of interest: 

X Y Z 

X Y Z 

X Y Z 

i) 

ii) 

iii) 

 

Here we see that cases i) and ii) are not distinguishable because they have the same 

dependency structure.  This presents problems for reliable reconstruction of genetic 

networks given correlation data alone, since in many instances it will not be possible to 

direct edges (directing the edges in such graphs establishes the cause and effect 

relationships of interest to us in reconstructing pathways associated with disease), and 

reliably directing the edges can require a considerable amount of data. 

In our present case we have a significant advantage given the relationships 

between gene expression and clinical traits and quantitative trait loci (QTL). The QTL 

information provides an extremely powerful filter as we are able to restrict attention from 

all significantly correlated genes and trait values, to those subsets of genes and traits that 

are under the control of a common set of QTL.  Our triplets then become QTL and traits, 

where we are able to initially direct an edge between the QTL and a single trait by 

definition of a QTL, and then test all other traits pair wise as discussed below to 



determine how the trait pairs are positioned relative to one another.  For instance, going 

back to the case where we have a clinical trait C  linked to a QTL L , we are able to 

immediately fix: 

L C
 

This relationship holds because L  is a QTL for C , and the QTL gives us the direction 

since it is causal for C  (i.e., variations in C  do not cause variations in the DNA such that 

the changes give rise to a QTL, rather DNA variations underlying a given QTL lead to 

variations in C ).  One method to position a given gene expression trait, R , relative to  

C , is to test for mutual independence of L  and C  given R .   That is, if C  and L  are 

truly independent given R , then we know the ( ), ,L C R  triplet has the form given in M1 

in Figure 1a of the main text.  

In applying this test to uncover the true relationship between the traits, one can 

consider all possible correlation structures induced by the different models and use 

likelihood methods to determine what model is best supported by the data. Towards that 

end, likelihood models for each of the three cases considered above are constructed.  

Beginning with the first case, we want to establish whether C  is correlated with the 

genotypes at L , conditional on R ,  i.e., we want to assess if the following relation among 

the three variables holds: 

( ) ( ) ( ), | | | .P C L R P C R P L R=  

This conditional probability is related to the mutual information measure that is typically 

used in network reconstruction problems: 
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, |
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where the summation symbol indicates the continuous variables C  and R  have been 

discretized to allow for efficient computation over complicated graph structures, as is 

usually done in network reconstruction problems3.  While the mutual information 

measure is useful in more general network reconstruction problems, the problem 

described here is significantly easier than the general case, and so, leads to a more robust 

and more powerful test for the purpose of establishing the relationship between any two 

traits, although, the sort of “test” described here can be systematically applied to 

reconstruct complex gene networks. 

Without loss of generality and given the application here to the BXD data set 

described in the main text, we assume an F2 population derived from two inbred strains 

of mice.  Beginning with individual animals in an F2 population, the likelihoods 

associated with each of the component pieces of the joint probability distributions for the 

3 models given in the main text follow from the simple regression models: 

( ) ( )i R R Rr f L g Lµ α δ ε= + + +  

and 

( ) ( )i C C Cc f L g Lµ α δ ε= + + + , 

where the ir  and ic  represent the measurements for the expression and clinical traits for 

individual i  in the population, α  and δ  are the additive and dominance effects, Rε  and 

Cε  are normally distributed with mean 0  and variance 2
Rσ  and 2

Cσ , respectively, and the 

functions f  and g  are constructed from the genotype probability distribution for locus 

L  as previously described4.  From this parameterization of the regression models, the 

likelihoods for an individual animal associated with the joint probabilities given above 

are 
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where ( )| ; |
ir L il r Lθ , ( )| ; |

ic L il c Lθ ,  ( )| ; |
i ir c i il r cθ , ( )| ; |

i ic r i il c rθ , ( )| , ; | ,
i ir c L i il r c Lθ , and 

( )| , ; | ,
i ic r L i il c r Lθ  correspond to ( )|P R L , ( )|P C L , ( )|P R C , ( )|P C R , ( )| ,P R C L , 

and ( )| ,P C R L , respectively.  The specific form of 
LRµ  and 

LCµ  depends on the locus 



genotype.  For example, given the Falconer parameterization for the trait/QTL regression 
models given above, 

LRµ  can take on values Rµ α− , Rµ δ+ , and Rµ α+ , depending on 

which of the 3 possible genotypic states in the F2 population at locus L  is under 

consideration.  For each trait we have assumed the distribution about each genotype at 

locus L  has constant variance.  Given these forms of the components of the likelihoods 

for a single animal, the likelihoods for each model over all animals in the population of 

interest are given by: 
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where the parameter vectors for each likelihood ( )1 2 3
, ,M M Mθ θ θ  are taken as the union of 

the component parameter vectors given above for each of the component pieces making 
up the model. Here the sum over the jL  represent the 3 possible QTL genotypes that 

obtain at a given locus in an F2 population constructed from inbred strains of mice.  For 

each likelihood model, the corresponding likelihood is maximized and parameters are 

estimated using standard maximum likelihood methods. The AICs are then computed for 

each model as two times the negative of loglikelihood, maximized over the parameters, 

plus two times the number of parameters.  The model associated with the smallest AIC 

value is identified as that which is best supported by the data.  

 An alternative to the likelihood approach described above to identify the model 

best supported by the data involves the use of conditional correlations.  For example, if 

model 1 holds, then the correlation between C  and L  conditional on R  will not be 

significantly different from 0.  On the other hand, if model 2 holds, then the correlation 



between R  and L  conditional on C  will not be significantly different from 0.  If the 

conditional correlations in both cases estimate to be significantly greater than 0, then we 

can conclude that model 3 is best supported by the data. Of course, if the conditional 

correlations both estimate to be statistically indistinguishable from 0, then we can the 

results are inconclusive. 

Statistical Test for Fat Mass Differences Between Wildtype and Knockout Mice.  

Given the experimental design for assessing fat mass differences between wildtype (WT) 

and knockout (KO) animals involves multiple repeated measures over a number of time 

points for each animal, we leverage this longitudinal data to enhance the power to detect 

differences at any given time point using autoregressive models5.  In particular, if we let 

tly  represent the fat mass measure for animal l  at time point t , then our autoregressive 

model of interest is 

( ) tl

t

j
ljtljttjltttl wyyQy +−++= ∑

=
−−

1
,,10 ˆφγγ  

for 7,6,5,4,3,2,1=t  (the 7 time points over which fat mass measures were taken), where 

( ) 2var ttlw σ= , for nl ,,1K= , and n  is the number of animals in the study.  Here, lQ  is 

the genotype indicator for the gene of interest, taking the value 0 for wildtype animals 
and 1 for KO animals.  ljtljt yy ,, ˆ −− −  represents the fat mass measures at time point 

1+− jt , where ljty ,ˆ −  is the prediction of  ljty ,−  from the previous model.  In taking this 

difference as the fat mass measure for a time point of interest, the effect of genotype on 

fat mass at previous time points is effectively removed.   

 After fitting the model at the desired time point, the parameter t1γ  can be tested 

for significance using a standard t test.  Therefore, the null hypothesis for the test is that 

there is no difference in fat mass between the KO and WT groups, conditional on 

genotypic effects from the previous time points.   



Construction and phenotyping of Zfp90 transgenic, C3ar1-/-, Tgfbr2+/-, and 

control mice.   

C3AR1-/- mice were obtained from Deltagen, Inc. (San Carlos, CA). A 6.93 kb IRES-

lacZ reporter and neomycin resistance cassette (IRES-lacZ-neo) was subcloned into a 5.0 

kb fragment isolated from a mouse genomic phage library,  such that 197 base pairs 

coding for the protein were replaced by IRES-LacZ-neo (Supplementary Fig. 3a). The 

IRES-lacZ-neo cassette was flanked by 3.4 kb of mouse genomic DNA at its 5´ aspect 

and 1.6 kb of mouse genomic DNA at its 3´ aspect. The targeting vector was linearized 

and electroporated into 129/OlaHsd mouse embryonic (ES) stem cells. ES cells were 

selected for G418 resistance, and colonies carrying the homologously integrated neo 

DNA were identified by PCR amplification using a 5´ neo-specific primer (5´- 

GGGATCTTGGCCATGGTAAGCTGAT-3´) paired with a primer located outside the 

targeting homology arms on the 5´ side (GS1: 5´- 

CAGCATCAAAAGCTGCACAGCGAGG-3´). The homologous recombination event 

was confirmed on the 3´ side using a 3´ neo-specific primer (5´- 

ACGTACTCGGATGGAAGCCGGTCTT-3´) paired with a primer located outside the 

targeting homology arm on the 3´ side. (GS2: 5´- 

GTGGCATTTGGCACTGTGTTCTGTC-3´).  

TGFBR2+/- mice were obtained from Deltagen, Inc. (San Carlos, CA).  A 6.93 kb 

IRES-lacZ reporter and neomycin resistance cassette (IRES-lacZ-neo) was subcloned 

into a 4.2 kb fragment isolated from a mouse genomic phage library,  such that 106 base 

pairs coding for the protein were replaced by IRES-LacZ-neo (Supplementary Fig. 4a). 

The IRES-lacZ-neo cassette was flanked by 1.2 kb of mouse genomic DNA at its 5´ 

aspect and 3.0 kb of mouse genomic DNA at its 3´ aspect. The targeting vector was 

linearized and electroporated into 129/OlaHsd mouse embryonic (ES) stem cells. ES cells 

were selected for G418 resistance, and colonies carrying the homologously integrated neo 



DNA were identified by PCR amplification using a 5´ neo-specific primer (5´- 

GGGATCTTGGCCATGGTAAGCTGAT-3´) paired with a primer located outside the 

targeting homology arms on the 5´ side (GS1: 5´- 

GCACAACCTGATCATACTGTATCCA-3´). The homologous recombination event was 

confirmed on the 3´ side using a 3´ neo-specific primer (5´- 

ACGTACTCGGATGGAAGCCGGTCTT-3´) paired with a primer located outside the 

targeting homology arm on the 3´ side. (GS2: 5´- 

TACCTCATGGCCCATATGACATAAT-3´).  

For both C3AR1-/- and TGFBR2+/- mice, colonies that gave rise to the correct 

size PCR product were confirmed by Southern blot analysis using a probe adjacent to the 

5´ region of homology. The presence of a single neo cassette was confirmed by Southern 

blot analysis using a neo gene fragment as a probe. Male chimeric mice were generated 

by injection of the targeted ES cells into C57Bl/6J blastocysts. Chimeric mice were bred 

with C57Bl/6J mice to produce F1 heterozygotes. Germline transmission was confirmed 

by PCR analysis. Initial germline heterozygotes were also tested for the homologous 

recombination event using the primers described above (located outside of the targeting 

construct) (Supplementary Fig. 3b and 4b). Following confirmation of the targeting event 

in animals, subsequent genotyping tracked transmission of the targeting construct 

(Supplementary Fig. 3c-d and 4c-d). F1 heterozygous males and females were mated to 

produce F2 wild-type, heterozygous and homozygous null mutant animals. Viable 

embryos for Tgfbr2-/- mice were identified, but none survived to birth, so that 

homozygous knockouts for this gene were determined to be lethal.  Mice were 

backcrossed with C57BL/6J mice and all phenotypic analysis was performed in a hybrid 

C57Bl/6J/129 background (75%/25%, respectively).  

The BAC clone CTD-2339M9, which covers the human ZFP90 gene sequence 

with minimal overlaps with neighboring genes, was purchased from Invitrogen  



(Carlsbad, CA) and the sequence was confirmed using PCR primers specific to the two 

BAC ends and the ZFP90 gene sequence. The clone was cultured in LB medium 

containing 12.5 µg/ml chloramphenical. BAC DNA was extracted and purified with a 

Large-Construct kit (QIAGEN, Valencia, CA) and subsequently quantified using pulse 

field electrophoresis (CHEF-DRTM II Electrophoresis System, BioRad, Hercules, CA) 

along with High DNA Mass Ladder (Invitrogen, Carlsbad, CA). The purified circular 

BAC DNA was injected into pronucleus of fertilized FVB eggs and surviving eggs were 

transferred to pseudopregnant FVB female mice at UCI Transgenic Mouse Facility 

(http://darwin.bio.uci.edu/%7Etjf/). Three ZFP90 transgenic founders were identified from 

DNA isolated from tail biopsies by PCR using BAC-end-specific and gene-specific 

primers. The integration of the entire BAC sequence was confirmed in all founders. 

Using RT-PCR, human ZFP90 transcript was identified from total RNA samples isolated 

from brain, heart, liver, kidney, and spleen, but not from the adipose tissue 

(Supplementary Fig. 5).  

Control FVB/NJ mice used for comparison to the Zfp90 transgenic were bred in 

house and at the Jackson Laboratory (Sacramento) from known homozygous parental 

breeders.  All animals were housed 4 per cage at 25ºC on a 10-hr dark/14-hr light cycle 

and had ad libitum access  to water and to regular rodent chow (Purina diet # 5015).   
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